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Abstract

Lumped external damping, acting on the concentrated mass at the tip of Beck’s column, is taken into account. This
additional external damping removes the prolonged inconsistency between theory and experiment for a column with a
tip mass, subjected to follower force.

In Sugiyama et al. [J. Aerospace Eng. 8 (1995) 9] and Wood et al. [Proc. Roy. Soc. Lond. Ser. A. 313 (1969) 239] the
experimental critical loads for a beam with a tip mass agree well with theoretical values for an undamped system. On the
other hand, the critical loads, calculated in Sugiyama et al. with account for the internal and distributed external
damping, were 50% lower than the experimental values. Since the actual experimental system is subject to damping, the
experiment and theory come into conflict. This conflict is resolved in this paper by observing that the experimental
system was subjected not only to the distributed external damping (due to distributed mass), but also to the lumped
damping, acting on the tip mass. When the lumped external damping included in the analysis, analytical critical forces
are in good agreement with experimental ones.
© 2003 Published by Elsevier Ltd.
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1. Introduction

Experimental investigation of the flutter instability of a cantilevered beam with a tip mass, subjected to a
follower force, was described in Sugiyama et al. (1995) and Wood et al. (1969). In both experiments critical
loads were in good agreement with those calculated for an undamped system, even though it is known that
there is damping in practice.

In Sugiyama et al. the tangential load was realized by installation of a solid rocket motor directly on a
cantilevered column. The experimental critical loads were slightly lower than calculated on the basis of no
damping. When the distributed external and internal damping were accounted for, the theoretically pre-
dicted critical loads were about 50% of the measured value.

In Wood et al. the tangential load was obtained by a jet of water, issuing from a nozzle box. By changing
the nozzle box mass, as well as the length and mass of a beam, a total of 36 experimental points were
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obtained. The discrepancy between measured critical loads and calculated for an undamped system did not
exceed 3%.

The proximity of critical load, calculated for an undamped system, to test is inconsistent to the well
known theoretical findings for Beck’s column: the arbitrary small, but finite internal damping, which is
always present in a real system, drastically reduces the follower critical load (Bolotin and Zhinzher, 1969).
Only when the ratio of external damping to internal one tends to infinity, does the critical load asymp-
totically approach the value, calculated for an undamped Beck’s column (Gajewski, 1972; Denisov and
Novikov, 1975).

However, in both experimental setups there was a distinctive feature: concentrated mass at the tip of a
beam and, therefore, a lumped external friction force acting on the mass. This additional damping is ac-
counted for in this paper.

2. Analysis

The mathematical model of the column is shown in Fig. 1. To apply the follower force at the tip of the
column, there is a concentrated mass M with a moment of inertia J, the center of gravity of which is located
at a distance a from the end of a column. The Voigt—Kelvin material of the column with Young’s modulus
E and viscosity modulus E* is assumed. Equation of small motion of the column is

oty o’y %y dy %y
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where m is mass per unit of length of column, 7 is its moment of inertia, and K is coefficient of external
distributed damping.

Boundary conditions at the fixed end are

:%:0 at x = 0 (2)
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The last term in the second equation represents the lumped damping force, applied at the center of gravity
of the tip mass. The term proportional to K, is lumped damping moment due to rotary inertia of the tip
mass. These forces were not accounted for in Sugiyama et al. (1995), Andersen and Thomsen (2002). In
Wood et al. (1969) damping was ignored completely.
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Fig. 1. Mathematical model.
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Introducing the dimensionless quantities

¢=x/L, a=a/lL, u=M/mL, v=J/mLl® p=PL*/EI

_ _E o KL KL K
C=pVEm =g VEm k= k= k=
and searching the solution of (1) in the form
y(x,1) = Lf (x) exp(qt) (4)
one obtains the equation and boundary conditions for f(x) as
(1+99)"" (&) +pf"(&) + (kg +¢*)f (&) = 0 (5)
(1+9q)f"(1) = =0af'(1) — aQa[f (1) + af"(1)] (6)
(1+2q)"(1) = Qi[f(1) + af'(1)] ()
f(0)=1'(0)=0 (8)

where Q) = ug® + kiq, 0> = v¢> + k»q. The solution to (5) satisfying boundary condition (8) can be written
as

f (&) = A[cosh(g2¢) — cos(gi¢)] + Blgi sinh(g2¢) — g2 sin(g1¢)]

2= VP —44(g +k)(1+79) £p ©)
" 2(1 + 7q)

where 4, B are the integration constants. The boundary conditions (6) and (7) lead to the characteristic
equation, the explicit form of which is given in Appendix A.

On the boundary of flutter instability the eigenvalue is a pure imaginary number ¢ = iw and the char-
acteristic equation takes the form

A(p,w) = Re(p, w) +iIm(p,w) =0
The critical load and frequency of vibration at this load are found from two equations:
Re(p,w) =0 (10)
Im(p,w) =0 (11)
For the undamped system (y = k = ky = k, = 0) Eq. (11) becomes an identity and the critical load is found

from the condition that two first eigenvalues of (10) coalesce.
3. Experimental results and comparison to analysis
Properties of experimental setups are listed in Table 1.
3.1. Sugiyama et al. (1995) test
Using experimental critical loads P (Sugiyama et al., 1995, Table 3) dimensionless loads p, = PL?/EI are

calculated and listed in Table 2 for different lengths of a bar. The analytical results py, recalculated for
undamped case (y =k = k; = k, = 0), are also listed in Table 2. On the average, p,/py = 0.97.
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Table 1
Properties of experimental setups
Property Units Sugiyama et al. (1995) Wood et al. (1969)
Tip mass, M kg 14.18 0.428
Mass moment of inertia, J kgm? 0.1196 7.67E-4
Distance to CG, a m 0.20 0.0348
Mass per unit length, m kg/m 0.481 0.0939
Bending stiffness, £/ Nm? 33.6 0.224
Column length, L m 1.05 0.51
Table 2
Comparison of measured critical loads to analytical for undamped system in Sugiyama et al. (1995)
Length, m Test, p Analysis with no damping, p,
1.10 12.0 12.92
1.05 12.5 12.76
1.025 12.2 12.68
1.00 12.5 12.59

As was proven by Namat-Nasser (1967), the flutter critical load of the system without damping is
the upper bound for the same system with slight internal damping, that is the latter is lower or equal to the
former, but cannot be higher. Experimental results in Table 2 suggest that this may be also true for the
system with both internal and external damping.

It was shown (Gajewski, 1972; Denisov and Novikov, 1975) that the analytical critical load for a damped
Back’s column depends only on the ratio k/y of distributed external to internal damping factors (when both
are small), not on these two values separately. Our calculations show that this is also true for a column with
a tip mass and lumped damping.

The reason for this is twofold. First, the roots of Eq. (10) are not affected by small damping factors.
Secondly, Eq. (11) after linearization relative to damping factors is written as

Il’l’l(_p7 (,l)) = B] (p, CU)')) + Bz(_p7 a))k —|—B3(p, (}J)kl + B4(p, CO)kz =0
or, for y #£ 0,

k k
1—|—B4(p,60)—2:

9 9

Bu(p.0) + Balp. )+ Ba(p,0) 0
That is why all analytical critical loads are given below as functions of damping factor ratios.

Obviously, it is impossible to calculate damping factors for the experimental setups. However, using
various ratios k/y, ki/y, ka/y we can find out how the critical load depends on them and whether it is
possible to match experimental critical loads by calculations which include damping. Fig. 2 shows calcu-
lated critical loads for £ = 0 and variable &, /7, k»/7; in Fig. 3 k, = 0 and k/y, k; /7 are variable.

Consider Fig. 2, where the ratio of critical loads p/p, is depicted vs. k;/y for k = 0 and k, = 0, 6y, 20y
(curves 1, 2, 3 respectively). For k, = 0, 6y (curves 1, 2) the ratio p/py first increases with increased k; /7,
reaches a maximum equal to unity, and then decreases. Hence, for low k,/y the damping k;/y may either
stabilize or destabilize the column. At the maximum the critical load reaches its upper bound, and for a
wide range of k;/y the calculated critical load p is bounded in the narrow interval:

po=p=097p = p (12)

(p, 1s the measured critical load). When k, > 20y the translational lumped damping &, always stabilizes the
column (see curve 3).
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Fig. 2. Sugiyama et al. (1995) test. Critical load p/py (po = 12.76 with no damping) vs. lumped damping &, /y for k =0. (1) k&, = 0;
(2) k2 = 67; (3) b = 20y.
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Fig. 3. Sugiyama et al. (1995) test. Critical load p/py (po = 12.76 with no damping) vs. distributed damping k/y for k, =0.
(1) &y /y = 689; (2) ky [y = 224, 2550; (3) ki /y = 0. Between lines 1 and 2 224y < k; <2550y.

In Fig. 3 the critical load is depicted vs. distributed damping k/y for k, = 0 and different values of &; /y.
Curve 3 shows the effect of internal and external distributed damping only. Point k/y = 2.4 on this curve
represents the critical load, calculated in Sugiyama et al. (1995). On line 1 &;/y = 689 (maximum point on
curve 1 of Fig. 2); between lines 1 and 2

224 < ki /y <2550 (13)
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Fig. 4. Wood et al. (1969) test. Critical load p/py (po = 14.35 with no damping) vs. lumped damping & /y for k =0. (1) k» = 0;
(2) ky = 10y; (3) kr = 209.
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Fig. 5. Wood et al. (1969) test. Critical load p/py (py = 14.35 with no damping) vs. distributed damping k/y for k, = 0. (1) k& /y = 592;
(2) ki /y =178, 1752; (3) ki /y = 0. Between lines 1 and 2 178y <k; <1752y.

(p/po = 0.97 on curve 1 of Fig. 2). It is seen that for the whole interval (13) the critical load does not depend
on k/y. This means that when the tip mass is much higher than the distributed one (in this case
u=M/mL = 28) the effect of distributed damping is negligible.

3.2. Wood et al. (1969) tests

The tests results in Wood et al. are given in the form of plots only and it is difficult to accurately read
numerical values. The critical loads are equal or somewhat lower than loads, calculated for the undamped
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system and we will assume that on the average, the equality p;/py = 0.97 holds. Figs. 4 and 5 are similar to
Figs. 2 and 3 respectively but both bounds of the interval (13) are lower, because the relative tip mass is
smaller, 4 = 8.9.

4. Conclusion

The important conclusions are as follow:

1. For Beck’s column with a tip mass the lumped damping at the end of the column should be taken into
account.

2. At one particular (optimum) value of the lumped damping the critical load reaches its upper bound,
equal to the critical load for an undamped system.

3. In a wide range around this optimum value the critical load is slightly lower than the upper bound.

4. In the experiments the destabilizing effect of internal damping was most likely masked by the lumped
external damping due to wind resistance. To verify this statement by test it would be desirable to drastically
reduce this damping. Wood et al. mentioned that *“. .. a simpler system is being developed to investigate the
effect” of “variable friction”, but to the best of this writer’s knowledge nothing of this sort was ever
published.
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Appendix A

Roots g, g, are given by (9).

Ap,®) = (1 +79)°41 — (1 +99)(4s + ads + 2244) 01 — (1 4+ 7¢) 0244 + 010245
g=io, O1=upq’ +hkq, O0r=vq +hq

Ay = g18:[g] + &5 + 2g1g5 cosh(g>) cos(g1) + g122(g7 — g3) sinh(g>) sin(g1)]

4, = (g} + g3)[g1 sinh(gy) cos(g1) — g cosh(gy) sin(gy)]

A3 = —(g +g3)" sinh(g,) sin(g1)

Ay = —£182(g7 + &3)[g2 sinh(gy) cos(g1) + & cosh(g,) sin(gy)]
As = 2g1&[1 — cosh(g) cos(g1)] — (g — ¢3) sinh(g») sin(g)
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