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Abstract

Lumped external damping, acting on the concentrated mass at the tip of Beck�s column, is taken into account. This

additional external damping removes the prolonged inconsistency between theory and experiment for a column with a

tip mass, subjected to follower force.

In Sugiyama et al. [J. Aerospace Eng. 8 (1995) 9] and Wood et al. [Proc. Roy. Soc. Lond. Ser. A. 313 (1969) 239] the

experimental critical loads for a beam with a tip mass agree well with theoretical values for an undamped system. On the

other hand, the critical loads, calculated in Sugiyama et al. with account for the internal and distributed external

damping, were 50% lower than the experimental values. Since the actual experimental system is subject to damping, the

experiment and theory come into conflict. This conflict is resolved in this paper by observing that the experimental

system was subjected not only to the distributed external damping (due to distributed mass), but also to the lumped

damping, acting on the tip mass. When the lumped external damping included in the analysis, analytical critical forces

are in good agreement with experimental ones.
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1. Introduction

Experimental investigation of the flutter instability of a cantilevered beam with a tip mass, subjected to a

follower force, was described in Sugiyama et al. (1995) and Wood et al. (1969). In both experiments critical

loads were in good agreement with those calculated for an undamped system, even though it is known that

there is damping in practice.

In Sugiyama et al. the tangential load was realized by installation of a solid rocket motor directly on a

cantilevered column. The experimental critical loads were slightly lower than calculated on the basis of no

damping. When the distributed external and internal damping were accounted for, the theoretically pre-
dicted critical loads were about 50% of the measured value.

In Wood et al. the tangential load was obtained by a jet of water, issuing from a nozzle box. By changing

the nozzle box mass, as well as the length and mass of a beam, a total of 36 experimental points were
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obtained. The discrepancy between measured critical loads and calculated for an undamped system did not

exceed 3%.

The proximity of critical load, calculated for an undamped system, to test is inconsistent to the well

known theoretical findings for Beck�s column: the arbitrary small, but finite internal damping, which is
always present in a real system, drastically reduces the follower critical load (Bolotin and Zhinzher, 1969).

Only when the ratio of external damping to internal one tends to infinity, does the critical load asymp-

totically approach the value, calculated for an undamped Beck�s column (Gajewski, 1972; Denisov and

Novikov, 1975).

However, in both experimental setups there was a distinctive feature: concentrated mass at the tip of a

beam and, therefore, a lumped external friction force acting on the mass. This additional damping is ac-

counted for in this paper.
2. Analysis

The mathematical model of the column is shown in Fig. 1. To apply the follower force at the tip of the

column, there is a concentrated mass M with a moment of inertia J , the center of gravity of which is located

at a distance a from the end of a column. The Voigt–Kelvin material of the column with Young�s modulus

E and viscosity modulus E� is assumed. Equation of small motion of the column is
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where m is mass per unit of length of column, I is its moment of inertia, and K is coefficient of external

distributed damping.
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The last term in the second equation represents the lumped damping force, applied at the center of gravity

of the tip mass. The term proportional to K2 is lumped damping moment due to rotary inertia of the tip

mass. These forces were not accounted for in Sugiyama et al. (1995), Andersen and Thomsen (2002). In

Wood et al. (1969) damping was ignored completely.
Fig. 1. Mathematical model.
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Introducing the dimensionless quantities
n ¼ x=L; a ¼ a=L; l ¼ M=mL; m ¼ J=mL3; p ¼ PL2=EI
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and searching the solution of (1) in the form
yðx; tÞ ¼ Lf ðxÞ expðqsÞ ð4Þ

one obtains the equation and boundary conditions for f ðxÞ as
ð1 þ cqÞf 0000ðnÞ þ pf 00ðnÞ þ ðkqþ q2Þf ðnÞ ¼ 0 ð5Þ

ð1 þ cqÞf 00ð1Þ ¼ �Q2f 0ð1Þ � aQ2½f ð1Þ þ af 0ð1Þ
 ð6Þ

ð1 þ cqÞf 000ð1Þ ¼ Q1½f ð1Þ þ af 0ð1Þ
 ð7Þ

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð8Þ

where Q1 ¼ lq2 þ k1q, Q2 ¼ mq2 þ k2q. The solution to (5) satisfying boundary condition (8) can be written

as
f ðnÞ ¼ A½coshðg2nÞ � cosðg1nÞ
 þ B½g1 sinhðg2nÞ � g2 sinðg1nÞ
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where A, B are the integration constants. The boundary conditions (6) and (7) lead to the characteristic

equation, the explicit form of which is given in Appendix A.

On the boundary of flutter instability the eigenvalue is a pure imaginary number q ¼ ix and the char-

acteristic equation takes the form
Dðp;xÞ ¼ Reðp;xÞ þ i Imðp;xÞ ¼ 0
The critical load and frequency of vibration at this load are found from two equations:
Reðp;xÞ ¼ 0 ð10Þ

Imðp;xÞ ¼ 0 ð11Þ

For the undamped system ðc ¼ k ¼ k1 ¼ k2 ¼ 0Þ Eq. (11) becomes an identity and the critical load is found

from the condition that two first eigenvalues of (10) coalesce.
3. Experimental results and comparison to analysis

Properties of experimental setups are listed in Table 1.

3.1. Sugiyama et al. (1995) test

Using experimental critical loads P (Sugiyama et al., 1995, Table 3) dimensionless loads pt ¼ PL2=EI are
calculated and listed in Table 2 for different lengths of a bar. The analytical results p0, recalculated for

undamped case ðc ¼ k ¼ k1 ¼ k2 ¼ 0Þ, are also listed in Table 2. On the average, pt=p0 ¼ 0:97.



Table 1

Properties of experimental setups

Property Units Sugiyama et al. (1995) Wood et al. (1969)

Tip mass, M kg 14.18 0.428

Mass moment of inertia, J kgm2 0.1196 7.67E)4

Distance to CG, a m 0.20 0.0348

Mass per unit length, m kg/m 0.481 0.0939

Bending stiffness, EI Nm2 33.6 0.224

Column length, L m 1.05 0.51

Table 2

Comparison of measured critical loads to analytical for undamped system in Sugiyama et al. (1995)

Length, m Test, pt Analysis with no damping, p0

1.10 12.0 12.92

1.05 12.5 12.76

1.025 12.2 12.68

1.00 12.5 12.59
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As was proven by Namat-Nasser (1967), the flutter critical load of the system without damping is
the upper bound for the same system with slight internal damping, that is the latter is lower or equal to the

former, but cannot be higher. Experimental results in Table 2 suggest that this may be also true for the

system with both internal and external damping.

It was shown (Gajewski, 1972; Denisov and Novikov, 1975) that the analytical critical load for a damped

Back�s column depends only on the ratio k=c of distributed external to internal damping factors (when both

are small), not on these two values separately. Our calculations show that this is also true for a column with

a tip mass and lumped damping.

The reason for this is twofold. First, the roots of Eq. (10) are not affected by small damping factors.
Secondly, Eq. (11) after linearization relative to damping factors is written as
Imðp;xÞ ¼ B1ðp;xÞc þ B2ðp;xÞk þ B3ðp;xÞk1 þ B4ðp;xÞk2 ¼ 0
or, for c 6¼ 0,
B1ðp;xÞ þ B2ðp;xÞ k
c
þ B3ðp;xÞ k1

c
þ B4ðp;xÞ k2

c
¼ 0
That is why all analytical critical loads are given below as functions of damping factor ratios.

Obviously, it is impossible to calculate damping factors for the experimental setups. However, using

various ratios k=c, k1=c, k2=c we can find out how the critical load depends on them and whether it is
possible to match experimental critical loads by calculations which include damping. Fig. 2 shows calcu-

lated critical loads for k ¼ 0 and variable k1=c, k2=c; in Fig. 3 k2 ¼ 0 and k=c, k1=c are variable.

Consider Fig. 2, where the ratio of critical loads p=p0 is depicted vs. k1=c for k ¼ 0 and k2 ¼ 0, 6c, 20c
(curves 1, 2, 3 respectively). For k2 ¼ 0, 6c (curves 1, 2) the ratio p=p0 first increases with increased k1=c,
reaches a maximum equal to unity, and then decreases. Hence, for low k2=c the damping k1=c may either

stabilize or destabilize the column. At the maximum the critical load reaches its upper bound, and for a

wide range of k1=c the calculated critical load p is bounded in the narrow interval:
p0 P pP 0:97p0 ¼ pt ð12Þ
(pt is the measured critical load). When k2 P 20c the translational lumped damping k1 always stabilizes the
column (see curve 3).



Fig. 2. Sugiyama et al. (1995) test. Critical load p=p0 (p0 ¼ 12:76 with no damping) vs. lumped damping k1=c for k ¼ 0. (1) k2 ¼ 0;

(2) k2 ¼ 6c; (3) k2 ¼ 20c.

Fig. 3. Sugiyama et al. (1995) test. Critical load p=p0 (p0 ¼ 12:76 with no damping) vs. distributed damping k=c for k2 ¼ 0.

(1) k1=c ¼ 689; (2) k1=c ¼ 224, 2550; (3) k1=c ¼ 0. Between lines 1 and 2 224c6 k1 6 2550c.
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In Fig. 3 the critical load is depicted vs. distributed damping k=c for k2 ¼ 0 and different values of k1=c.
Curve 3 shows the effect of internal and external distributed damping only. Point k=c ¼ 2:4 on this curve

represents the critical load, calculated in Sugiyama et al. (1995). On line 1 k1=c ¼ 689 (maximum point on

curve 1 of Fig. 2); between lines 1 and 2
2246 k1=c6 2550 ð13Þ



Fig. 4. Wood et al. (1969) test. Critical load p=p0 (p0 ¼ 14:35 with no damping) vs. lumped damping k1=c for k ¼ 0. (1) k2 ¼ 0;

(2) k2 ¼ 10c; (3) k2 ¼ 20c.

Fig. 5. Wood et al. (1969) test. Critical load p=p0 (p0 ¼ 14:35 with no damping) vs. distributed damping k=c for k2 ¼ 0. (1) k1=c ¼ 592;

(2) k1=c ¼ 178, 1752; (3) k1=c ¼ 0. Between lines 1 and 2 178c6 k1 6 1752c.
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(p=p0 ¼ 0:97 on curve 1 of Fig. 2). It is seen that for the whole interval (13) the critical load does not depend

on k=c. This means that when the tip mass is much higher than the distributed one (in this case

l ¼ M=mL ¼ 28) the effect of distributed damping is negligible.
3.2. Wood et al. (1969) tests

The tests results in Wood et al. are given in the form of plots only and it is difficult to accurately read
numerical values. The critical loads are equal or somewhat lower than loads, calculated for the undamped
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system and we will assume that on the average, the equality pt=p0 ¼ 0:97 holds. Figs. 4 and 5 are similar to

Figs. 2 and 3 respectively but both bounds of the interval (13) are lower, because the relative tip mass is

smaller, l ¼ 8:9.
4. Conclusion

The important conclusions are as follow:

1. For Beck�s column with a tip mass the lumped damping at the end of the column should be taken into

account.

2. At one particular (optimum) value of the lumped damping the critical load reaches its upper bound,

equal to the critical load for an undamped system.

3. In a wide range around this optimum value the critical load is slightly lower than the upper bound.

4. In the experiments the destabilizing effect of internal damping was most likely masked by the lumped
external damping due to wind resistance. To verify this statement by test it would be desirable to drastically

reduce this damping. Wood et al. mentioned that ‘‘. . . a simpler system is being developed to investigate the

effect’’ of ‘‘variable friction’’, but to the best of this writer�s knowledge nothing of this sort was ever

published.
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Appendix A

Roots g1, g2 are given by (9).
Dðp;xÞ ¼ ð1 þ cqÞ2A1 � ð1 þ cqÞðA2 þ aA3 þ a2A4ÞQ1 � ð1 þ cqÞQ2A4 þ Q1Q2A5

q ¼ ix; Q1 ¼ lq2 þ k1q; Q2 ¼ mq2 þ k2q

A1 ¼ g1g2½g4
1 þ g4

2 þ 2g2
1g

2
2 coshðg2Þ cosðg1Þ þ g1g2ðg2

1 � g2
2Þ sinhðg2Þ sinðg1Þ


A2 ¼ ðg2
1 þ g2

2Þ½g1 sinhðg2Þ cosðg1Þ � g2 coshðg2Þ sinðg1Þ

A3 ¼ �ðg2

1 þ g2
2Þ

2
sinhðg2Þ sinðg1Þ

A4 ¼ �g1g2ðg2
1 þ g2

2Þ½g2 sinhðg2Þ cosðg1Þ þ g1 coshðg2Þ sinðg1Þ

A5 ¼ 2g1g2½1 � coshðg2Þ cosðg1Þ
 � ðg2

1 � g2
2Þ sinhðg2Þ sinðg1Þ
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